Biodegradable and Biocompatible Polyhydroxy-alkanoates (PHA): Auspicious Microbial Macromolecules for Pharmaceutical and Therapeutic Applications.

نویسنده

  • Martin Koller
چکیده

Polyhydroxyalkanoates (PHA) are bio-based microbial biopolyesters; their stiffness, elasticity, crystallinity and degradability are tunable by the monomeric composition, selection of microbial production strain, substrates, process parameters during production, and post-synthetic processing; they display biological alternatives for diverse technomers of petrochemical origin. This, together with the fact that their monomeric and oligomeric in vivo degradation products do not exert any toxic or elsewhere negative effect to living cells or tissue of humans or animals, makes them highly stimulating for various applications in the medical field. This article provides an overview of PHA application in the therapeutic, surgical and tissue engineering area, and reviews strategies to produce PHA at purity levels high enough to be used in vivo. Tested applications of differently composed PHA and advanced follow-up products as carrier materials for controlled in vivo release of anti-cancer drugs or antibiotics, as scaffolds for tissue engineering, as guidance conduits for nerve repair or as enhanced sutures, implants or meshes are discussed from both a biotechnological and a material-scientific perspective. The article also describes the use of traditional processing techniques for production of PHA-based medical devices, such as melt-spinning, melt extrusion, or solvent evaporation, and emerging processing techniques like 3D-printing, computer-aided wet-spinning, laser perforation, and electrospinning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyhydroxyalkanoate production from unexplored sugar substrates Producción de polihidroxialcanoatos a partir de sustratos azucarados inexplorados

Industrial-scale production of biopolymers is restricted by its elevated production costs in comparison with those associated with synthetic (no-biodegradable and no-biocompatible) polymers. In this study we tested for the first time two low-cost carbon substrates (i.e. carob pulp and fique juice) for lab-scale production of polyhydroxyalkanoate (PHA) with Bacillus megaterium. PHA detection and...

متن کامل

Microbial production of biodegradable polymers and their role in cardiac stent development

Biodegradable polymers have attracted a lot of attention in the recent years. These biopolymers are large macromolecules composed of single, repeating monomer units. They are of very high molecular weight and their material characteristics vary according to the nature of their monomer composition. Over the last decade, depletion in the petroleum reserves has resulted in the emergence of biodegr...

متن کامل

Synthesis and Characterization of Biodegradable Semi-Interpenetrating Polymer Networks Based on Star-Shaped Copolymers of ɛ-Caprolactone and Lactide

In this paper, the focus is on a new kind of biodegradable semi-interpenetrating polymer networks, which derived from ɛ-caprolactone, lactide, 1,4-butane diisocyanate and ethylenediamine and also its potential has been investigated in soft tissue engineering applications. The polymers were characterized by nuclear magnetic resonance (NMR) spectrometry, fourier transform infrared spectroscopy (F...

متن کامل

Synthesis and Characterization of Biodegradable Semi-Interpenetrating Polymer Networks Based on Star-Shaped Copolymers of ɛ-Caprolactone and Lactide

In this paper, the focus is on a new kind of biodegradable semi-interpenetrating polymer networks, which derived from ɛ-caprolactone, lactide, 1,4-butane diisocyanate and ethylenediamine and also its potential has been investigated in soft tissue engineering applications. The polymers were characterized by nuclear magnetic resonance (NMR) spectrometry, fourier transform infrared spectroscopy (F...

متن کامل

Continuous Production Mode as a Viable Process-Engineering Tool for Efficient Poly(hydroxyalkanoate) (PHA) Bio-Production

Among all types of biopolymers occurring in living cells, poly(hydroxyalkanoates) (PHAs) display the highest potential for applications in diverse fields of the plastic market.1,2,3,4 PHAs are biobased, biocompatible and biodegradable polyesters of hydroxyalkanoic acids synthesized by prokaryotic microbes as intracellular carbon and energy storage compounds.5,6 Additionally, PHA synthesis by ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2018